Tracking Control of Time Delay Bilinear Systems via Block Pulse Functions
نویسندگان
چکیده
The tracking control of bilinear system with delayed state is synthesized using Block pulse functions. A linear controllers are designed allowing the systems output to follow a preshaped reference model. The parameters of the feedback regulator are derived by solving a linear algebraic equation in the least square sense. Simulation results are provided to demonstrate the merits of the proposed control approach.
منابع مشابه
Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملNON-FRAGILE GUARANTEED COST CONTROL OF T-S FUZZY TIME-VARYING DELAY SYSTEMS WITH LOCAL BILINEAR MODELS
This paper focuses on the non-fragile guaranteed cost control problem for a class of T-S fuzzy time-varying delay systems with local bilinear models. The objective is to design a non-fragile guaranteed cost state feedback controller via the parallel distributed compensation (PDC) approach such that the closed-loop system is delay-dependent asymptotically stable and the closed-loop performance i...
متن کاملNUMERICAL SOLUTION OF DELAY INTEGRAL EQUATIONS BY USING BLOCK PULSE FUNCTIONS ARISES IN BIOLOGICAL SCIENCES
This article proposes a direct method for solving three types of integral equations with time delay. By using operational matrix of integration, integral equations can be reduced to a linear lower triangular system which can be directly solved by forward substitution. Numerical examples shows that the proposed scheme have a suitable degree of accuracy.
متن کاملADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کاملNumerical solution of system of linear integral equations via improvement of block-pulse functions
In this article, a numerical method based on improvement of block-pulse functions (IBPFs) is discussed for solving the system of linear Volterra and Fredholm integral equations. By using IBPFs and their operational matrix of integration, such systems can be reduced to a linear system of algebraic equations. An efficient error estimation and associated theorems for the proposed method are also ...
متن کامل